
Architecture of Micro-Frontends: A Comprehensive Exploration

Description

In the ever-evolving landscape of web development, the architectural trend toward microservices has
become a cornerstone for modern applications. With the rise of modular, scalable backend
architectures, the need for similar flexibility in the frontend domain has emerged. This has given birth to
the concept of micro-frontends, an architectural approach that breaks down monolithic frontend
systems into smaller, independent, and maintainable components. Micro-frontends are an extension of
the microservices pattern, bringing the same principles of isolation, modularity, and scalability to the
frontend. This article explores the architecture of micro-frontends, their potential benefits, challenges,
and practical implementations, drawing insights from current research and case studies.

The Rise of Micro-Frontends

Micro-frontends were introduced in 2016 by ThoughtWorks Technology Radar to address the
limitations posed by monolithic frontend architectures. Traditional frontend development typically
revolves around monolithic structures where the entire frontend is managed as a single entity. This

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 1
Footer Tagline

approach, while suitable for small-scale applications, becomes increasingly unwieldy as applications
grow in complexity. Monolithic frontends can result in slow build times, complex maintenance, and
challenges in scaling development across teams. In contrast, micro-frontends allow different teams to
develop, deploy, and maintain independent frontend modules, each responsible for a specific feature
or domain of the application.

Micro-frontends effectively divide a large, complex frontend into smaller, independently manageable
units. Each micro-frontend can be developed using its own technology stack, without necessarily
relying on the technology choices of other teams. This aligns with the core principles of microservices,
where backend services are isolated, allowing for independent deployments and scaling.

Key Principles of Micro-Frontend Architecture

Before diving into the micro front-end technology, we must know what is microservices architecture as
micro-frontend concept is vaguely inspired by, and named after, microservices.

According to the official docs,

The architecture of micro-frontends follows a few fundamental principles, as outlined in Prajwal et al.
(2021):

Technology Agnosticism: Each team working on a micro-frontend should have the freedom to
choose its technology stack, including frameworks, libraries, and tools. This independence allows
teams to evolve their frontends without affecting the overall system.
Code Isolation: Teams should ensure that their micro-frontends are isolated and do not rely on
shared global states or variables. This isolation prevents dependencies between different micro-
frontends and allows for better maintainability.
Domain-Driven Design: Each micro-frontend should be responsible for a specific business
domain. This aligns with the principles of domain-driven design, where different parts of an
application are divided based on the business domain they serve.
Native Browser Features: Whenever possible, communication between micro-frontends should
leverage native browser features, such as events, rather than relying on custom APIs.
Resiliency: Micro-frontends should degrade gracefully in cases of failure. Even if one micro-
frontend fails, the rest of the application should continue functioning without significant
degradation in user experience.

Composition of Micro-Frontends

There are several approaches to composing micro-frontends. The three most widely adopted

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 2
Footer Tagline

https://microservices.io/

techniques are server-side composition, client-side composition, and composition using Ajax. Each of
these methods comes with its own set of advantages and challenges:

A. Server-Side Composition

In server-side composition, the backend server assembles the different micro-frontends and renders
the final webpage. This approach ensures faster initial load times since the server takes responsibility
for rendering the components. This method is particularly beneficial for applications that prioritize
search engine optimization (SEO) and require high-performance first-page loads. Companies like IKEA
and Amazon have successfully adopted this technique to manage their large-scale web applications.

B. Client-Side Composition

Client-side composition leverages frameworks like React, Angular, or Vue to dynamically load micro-
frontends in the browser. Each micro-frontend is treated as a web component, making it easy to
integrate into the larger application. This method offers greater flexibility and interactivity, as client-side
rendering frameworks excel at building responsive, dynamic user interfaces. However, the downside is
that initial load times can be slower compared to server-side rendering, particularly for complex
applications.

C. Composition via Ajax

This method integrates different micro-frontends into a single document by fetching them using Ajax. It
is particularly useful for enhancing search engine compatibility and accessibility, as the content is
loaded incrementally. However, managing CSS and JavaScript collisions between different micro-
frontends can be challenging when using this method. Naming conventions and namespace
management become crucial in preventing conflicts.

Benefits of Micro-Frontends

Micro-frontends bring several advantages to the table, particularly for large-scale applications
developed by distributed teams. According to research and case studies, including those by Prajwal et
al. (2021) and others, the following benefits stand out:

Team Autonomy: Micro-frontends allow teams to work independently on different parts of the
application. Each team can take full ownership of its micro-frontend, reducing dependencies and
bottlenecks in the development process.
Improved Scalability: Since each micro-frontend is an independent module, it becomes easier
to scale development efforts by distributing the work across multiple teams. This also allows for
faster feature development and deployment cycles.
Reduced Build Times: By breaking down the frontend into smaller pieces, micro-frontends
reduce build times. Changes to one micro-frontend do not require the entire application to be
rebuilt, which enhances the overall development workflow.
Fault Isolation: In a monolithic frontend, an error in one part of the application can bring down
the entire system. Micro-frontends isolate errors to the specific component in which they occur,
reducing the impact on the overall application.
Technology Independence: Micro-frontends can be built using different frameworks and tools,

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 3
Footer Tagline

allowing teams to use the best-suited technology for their specific requirements. This flexibility
leads to more efficient development.

Drawbacks and Challenges

Despite the numerous advantages, micro-frontends also present certain challenges that need to be
carefully managed:

Code Redundancy: As teams work independently, there is a risk of duplicating code, particularly
in areas like CSS and JavaScript. This can lead to bloated codebases and reduced performance.
Complex Workflow: Managing workflows that span across multiple micro-frontends can be
difficult, especially when different technology stacks are involved. Coordinating navigation,
routing, and state management between micro-frontends adds complexity.
Communication Overhead: Micro-frontends should ideally not communicate directly with each
other. However, in practice, certain features may require cross-communication, which can
undermine the isolation principle and introduce tight coupling.
Performance Issues: Client-side composition can result in slower load times, especially for first-
page loads. This latency can degrade the user experience, particularly for applications with
complex, interactive UIs.

Practical Applications of Micro-Frontends

Micro-frontends have been successfully adopted in various industries. A few noteworthy
implementations include:

Content Management Systems: Micro-frontends have been used in the development of content
management systems (CMS) like DAZN and SAP. In these cases, the microservices architecture
has been extended to the frontend to manage complex, multi-user systems efficiently.
E-Commerce Platforms: Companies like IKEA and Zolando have adopted micro-frontends to
enhance the scalability and maintainability of their e-commerce platforms. By using server-side
composition, these platforms ensure fast load times and better SEO performance.
Educational Platforms: Micro-frontends have also found their way into educational management
systems, where they are used to create scalable platforms for delivering online courses and
managing student information.

Conclusion

It heavily depends on your business case, whether you should or should not use micro frontends. If
you have a small project and team, micro frontend architecture is not as such required. At the same
time, large projects with distributed teams and a large number of requests benefit a lot from building
micro frontend applications. That is why today, micro frontend architecture is widely used by many
large companies, and that is why you should opt for it too.

Category

1. Technology

Date Created

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 4
Footer Tagline

September 8, 2024
Author
admin

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 5
Footer Tagline

