%PDF-1.7 1 0 obj << /Type /Catalog /Outlines 2 0 R /Pages 3 0 R >> endobj 2 0 obj << /Type /Outlines /Count 0 >> endobj 3 0 obj << /Type /Pages /Kids [6 0 R ] /Count 1 /Resources << /ProcSet 4 0 R /Font << /F1 8 0 R /F2 9 0 R /F3 10 0 R /F4 11 0 R >> /ExtGState << /GS1 12 0 R /GS2 13 0 R /GS3 14 0 R /GS4 15 0 R >> >> /MediaBox [0.000 0.000 595.280 841.890] >> endobj 4 0 obj [/PDF /Text ] endobj 5 0 obj << /Producer (dompdf 1.0.2 + CPDF) /CreationDate (D:20250821223044+00'00') /ModDate (D:20250821223044+00'00') >> endobj 6 0 obj << /Type /Page /MediaBox [0.000 0.000 595.280 841.890] /Parent 3 0 R /Contents 7 0 R >> endobj 7 0 obj << /Filter /FlateDecode /Length 971 >> stream xVn6}W Зh˃um E(H*ͦuBŲHi99rq`V ?<>b8@ [U ~3:brJ&5uNPlMXFaם+$QҬY? .[A Hn]òҵƟc]ִ6hH6q6wJwՍRqZlojjBf:^&IȜyMf" uY~QWPPOwySE(^H %#\+|yl;ISS SEqoco/ -u˯YZp 0ժ[@ Ib2|l"2 ҵir03zѰQQG6h!H@m{6S5EwK6 u6ڋ}!̵ ,# L!Q2deil@jSTOaVmee l< "]yZ`(#- Dmz+0TLduk]-u l=2UO,{qH"m˞LgMCݜ>OqgSwXtT6GTy+p0aFH[`wT6t`={mM,&F7(y_f|Js . lfa-7 >u el3-Ӈ!AO<ʦ=P {v׹JY̐Q :^\0iJ4"2g(lg]je1QO<#qg#U0Q|s&S6NOpJR /J> endobj 9 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Times-Bold /Encoding /WinAnsiEncoding >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica /Encoding /WinAnsiEncoding >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F4 /BaseFont /Helvetica-Bold /Encoding /WinAnsiEncoding >> endobj 12 0 obj << /Type /ExtGState /BM /Normal /CA 0.3 >> endobj 13 0 obj << /Type /ExtGState /BM /Normal /ca 0.3 >> endobj 14 0 obj << /Type /ExtGState /BM /Normal /CA 1 >> endobj 15 0 obj << /Type /ExtGState /BM /Normal /ca 1 >> endobj xref 0 16 0000000000 65535 f 0000000009 00000 n 0000000074 00000 n 0000000120 00000 n 0000000372 00000 n 0000000401 00000 n 0000000550 00000 n 0000000653 00000 n 0000001696 00000 n 0000001805 00000 n 0000001913 00000 n 0000002021 00000 n 0000002134 00000 n 0000002193 00000 n 0000002252 00000 n 0000002309 00000 n trailer << /Size 16 /Root 1 0 R /Info 5 0 R /ID[] >> startxref 2366 %%EOF Papers - IJSAC

Papers

Generative Models of Images and Neural Networks

Generative Models of Images and Neural Networks

Generative models, powered by neural networks, are transforming how computers create images from scratch. Techniques like Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) have enabled machines to generate highly realistic visuals by learning patterns in vast datasets. These models have diverse applications, from AI-generated art to medical imaging and data augmentation. However, challenges like ethical considerations and security risks, such as deepfakes, must be addressed to ensure responsible use of these technologies. Explore the future of generative models in AI-driven innovation.

The Next 15 Years for Cloud Computing: Evolution, Expansion, and Innovation

The Next 15 Years for Cloud Computing: Evolution, Expansion, and Innovation

The next 15 years of cloud computing will witness significant evolution in scalability, security, and AI integration. As industries increasingly rely on cloud infrastructure, advancements in edge computing, quantum computing, and IoT will drive innovation. The cloud will expand beyond traditional data storage and processing, becoming a critical enabler of AI-driven insights, real-time decision-making, and decentralized operations. Security enhancements and regulatory compliance will shape cloud technologies, ensuring safer data handling and resilience. This period promises transformative growth, impacting everything from enterprise solutions to personal tech experiences.